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Abstract. The shape of the intensity pulse of a passively Q-switched microchip laser is investigated numer-
ically and analytically. Our analysis is motivated by independent microchip laser experiments exhibiting
nearly symmetric pulses in the case of a semiconductor saturable absorber and asymmetric pulses in the
case of a solid state saturable absorber. Asymptotic methods are used to determine limiting behaviors of
the pulse shape for both symmetric and asymmetric pulses. In the first case, we determine a sech2 solu-
tion parametrized by one parameter which can be determined by solving two coupled nonlinear algebraic
equations. In the second case, the pulse solution is decomposed into two distinct approximations exhibiting
different amplitude and time scales properties. We review earlier approximations of the repetition rate and
the pulse width.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 42.55.Sa Microcavity and microdisk lasers – 42.60.Gd Q-switching

1 Introduction

In recent years there has been an increased interest in CW
pumped passively Q-switched (PQS) microchip lasers be-
cause they are compact, simple to fabricate and they offer
good lasing properties for scientific and industrial applica-
tions. In particular, PQS microchip lasers are now capable
of producing extremely short high-peak-power pulses (i.e.,
less than 1 ns duration and with peak powers larger than
10 kW). PQS microchip studies consider CW pumped de-
vices which use either semiconductor [1–4] or solid state
saturable absorbers [5–8]. In order to optimize the proper-
ties of these pulses, several parameters can be controlled
such as the optical density of the absorber, the crystal
thickness, or the pump power. Simple theoretical guide-
lines for the pulse width, the repetition rate and other
measurable physical quantities are desirable but consist
of either simple empirical formulae [2,6] or numerical sim-
ulations of laser rate equations [8]. The rate equations con-
sist of three nonlinear first-order differential equations for
the photon density, the laser population inversion, and the
absorber state population. They cannot be solved exactly
and their numerical integration can be delicate because of
the PQS distinct time and amplitude scales. However, we
may take advantage of these different scales and construct
an asymptotic approximation of the PQS limit-cycle orbit
in the phase plane [10]. In [12], we estimated the parame-
ters for the experiment by Zayhowski and Dill III [6] and
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derived this approximation for microchip lasers. Specifi-
cally, we obtained a series of nonlinear algebraic equations
for physically relevant quantities such as the pulse peak
power and the repetition rate.

In this paper, we concentrate on the shape of the in-
tensity pulse. The pulses observed in [6] are typically ener-
getic and asymmetric. By contrast, the pulses observed by
Spühler et al. [4] are less energetic and nearly symmetric.
Both experiments are using microchip lasers but with dif-
ferent saturable absorbers. A first objective of this paper
is to understand the similitudes and differences between
these microchip laser experiments. To this end, we shall
formulate the laser rate equations in dimensionless form
and compute the parameters for the microchip lasers using
either solid state saturable absorbers [6] or semiconductor
saturable absorbers [4]. The values of these parameters
suggest asymptotic limits which we investigate. Our anal-
ysis discusses the conditions for a nearly symmetric pulse
and leads to a systematic derivation of its analytical ap-
proximation. We review and improve commonly used for-
mulae for the amplitude and the width of the pulse. We
also consider the case of a strongly asymmetric pulse and
show that the pulse is the contribution of two distinct
solutions. Each solution emphasizes a different physical
process.

The plan of the paper is as follows. In Section 2, we
formulate the laser rate equations in dimensionless form
and discuss the values of the parameters which motivate a
new analysis of the microchip laser equations. In Section 3,
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Table 1. Dimensionless parameters for microchip solid state lasers using two different absorbers.

saturable absorber γ γ A α A/Ath

Cr4+:YAG 1.75× 10−6 6.35× 10−5 3.96 0.085 2 ∼ 2
semiconductor 3.7× 10−7 9.3× 10−2 0.36 4× 10−3 ∼ 2–3

we introduce the simplified equations for the PQS limit-
cycle. These equations are obtained by a two part asymp-
totic analysis of the laser equations and form the starting
point of our study of the pulse shape. We show that sim-
ple analytical expressions documented in the literature as
guidelines for optimizing the pulse properties [2,4,8,11]
can be derived from our reduced equations. In Section 4,
we consider the case of symmetric pulses and derive a
sech2 pulse shape in a specific limit. The amplitude and
the width of the pulse depends on one parameter which
can be estimated either numerically or analytically. In Sec-
tion 5, we investigate the case of an asymmetric pulse.
We show that the intensity quickly increases and then
slowly decays exponentially. Finally, we summarize the
main points of our paper in Section 6.

2 Formulation

We consider the following dimensionless rate equations for
a laser with a saturable absorber [13]

dI
ds

= I
(
−1 +AD +AD

)
, (1)

dD
ds

= γ
(
1−D(1 + I)

)
, (2)

dD
ds

= γ
(
−1−D(1 + αI)

)
. (3)

In these equations, I represents the intensity of the laser
field, D is the dimensionless gain and D is the dimension-
less saturable absorber gain. Time s is measured in units
of the cavity round trip time τc. γ, γ are proportional to
the decay rates of the two gains normalized by the cavity
decay time. The parameter α is defined as the ratio of the
gain saturation and saturable absorber saturation fluxes.
A is the ratio of the saturable absorber small signal gain
to the cavity losses. A is the dimensionless pump param-
eter associated with the active medium and is our control
parameter. In terms of A, the laser first threshold is given
by A = Ath ≡ 1 + A. These equations were used suc-
cessfully for a series of studies concentrating on gas lasers
with saturable absorber (see [14–16]). Modeling the mi-
crochip experiment of Zayhowski and Dill III [6] who are
using a Nd:YAG gain medium coupled to a Cr4+:YAG
saturable absorber, we have estimated the values of the
dimensionless parameters [12]. They are listed in the first
line of Table 1. We also consider the microchip experiment
of Spühler et al. [4] who used a diode-pumped Nd:YVO4

microchip laser with a semiconductor saturable absorber.
Values of the dimensionless parameters are evaluated in
Appendix A and are listed in the second line of Table 1.

It is interesting to discuss the similitudes and differ-
ences between these two laser systems. Both lasers ad-
mit small values of γ, γ, verify the inequality γ � γ,
and exhibit a small value of α. However, the value of
A is different for these two lasers being relatively small
in the case of a semiconductor saturable absorber. The
small values of γ and γ are typical to all class B lasers
which include CO2, semiconductor and solid state lasers.
The small value of α suggests a weak saturable absorber
but, as we shall demonstrate, the fact that αγ is O(γ) or
larger is sufficient to generate PQS oscillations. A ≡ q0/l
where q = q0 is the equilibrium value of the saturable
loss coefficient in the absence of laser light and l is the
nonsaturable loss coefficient (see Appendix A). For the
solid state saturable absorber, we determine the values of
q0 = 2σaN0Ls and l = ln(1/r) from the data collected
in [12]. We note that q0 is three times larger for the solid
state saturable absorber (q0 solid ' 0.13 and q0 semi ' 0.05)
while l is three time smaller for the solid state saturable
absorber (lsolid ' 0.04 and lsemi ' 0.14). The two param-
eters q0 and l both contribute to an A ten times larger
for the solid state saturable absorber. The nonsaturable
cavity losses clearly dominate in the case of a semicon-
ductor saturable absorber while the saturable absorber is
the main loss mechanism for a solid state saturable ab-
sorber.

With the parameter values listed in Table 1, we solve
numerically equations (1–3) The long time solution corre-
sponds to a limit-cycle shown in Figures 1 and 2. Its nu-
merical integration is delicate when using conventional in-
tegration packages because the intensity is O

(
exp(−1/γ)

)
small during the interpulse phase. Therefore, we have
determined the PQS oscillations by using a two part
code. We integrate equations (1–3) by using a conven-
tional method except when the intensity becomes small
(I < 10−3). Then, we use the exact solution of the linear
equations obtained from equations (1–3) by setting I = 0
in equations (2, 3).

Integrating equations (1–3) for gradually smaller value
of γ and γ (γ/γ fixed) clearly indicates an asymptotic limit
for the PQS limit-cycle; see Figure 3. The figure shows
that the maximum intensity scales like γ−1 while D re-
mains O(1) (i.e., the limit cycle represented in terms of
γI and D doesn’t change as γ is decreased below 10−4).
The figure also shows that the intensity is almost zero dur-
ing the interpulse period. With I = 0 into equation (2),
we then note that D is a function of γt which implies that
the interpulse period scales like γ−1. The behavior of the
limit-cycle for small γ thus suggests finding an approxi-
mation of the PQS oscillations in terms of two main con-
tributions. These two contributions and their connection
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Fig. 1. PQS limit-cycle for a microchip laser using a solid state saturable absorber. The values of the parameters correspond
to the first line in Table 1 and A = 10.48. Left: the limit-cycle is shown in the phase plane (D, γI). It consists of a long regime
where I ∼ 0 and D is slowly increasing (interpulse phase) followed by a quick change in the intensity (intensity pulse). The
initial and final values of the interpulse regime occur at D = Da and D = Db, respectively. The two squares denotes the singular
points. Right: the asymmetric pulse shape.

Fig. 2. PQS limit cycle for a microchip laser using a semiconductor saturable absorber. The values of the parameters correspond
to the second line in Table 1 and A = 4.08. Left: the limit-cycle is shown in the phase plane (D, γI). Right: the nearly symmetric
pulse shape.

(matching) can be determined by the method of matched
asymptotic expansions [17].

3 Asymptotic approximation of the PQS
limit-cycle oscillations

The asymptotic analysis of the PQS oscillations in the
limit γ and γ = O(γ) small is described in detail in refer-
ences [10,12] so that we only summarize the main results.
PQS oscillations consist of a succession of high intensity
pulses separated by long intervals where the intensity is
almost zero. Taking advantage of these different scales,

the PQS limit-cycle oscillations can be described by five
nonlinear algebraic equations for the period and the ini-
tial and final values of D and D of the interpulse phase.
However, we note from Table 1 that γ � γ for our two
microchip laser systems which allows us to reduce our five
equations to three equations which we now describe.

3.1 Interpulse period

We substitute I = 0 into equations (2, 3) and solve the
resulting linear equations (1–3). The requirement that I
remain small during the interpulse solution leads to three
conditions relating the period T and the initial and final
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Fig. 3. Asymptotic limit of the PQS limit-cycle as γ → 0.
The limit-cycle solution has been determined for two different
values of γ. The values of the parameters correspond to the
first line of Table 1 except γ and γ. Curve 1 corresponds to
γ = 1.75 × 10−2, γ = 6.35 × 10−1 and curve 2 corresponds to
γ = 1.75×10−3 , γ = 6.35×10−2 . For smaller γ, the numerical
limit-cycle matches its asymptotic limit shown by the broken
line and given by equation (10).

values of D and D. Because γ � γ, D ' −1 as soon
as s = O(γ−1) and these three conditions reduce to two
equations given by

(A−Ath)γT +A(Da − 1)
(
1− exp(−γT )

)
= 0, (4)

Db = (Da − 1) exp(−γT ) + 1. (5)

In these equations, Ath ≡ 1 + A denotes the laser first
threshold and A > Ath. Da and Db denote the initial and
final values of D, respectively (see Figs. 1 and 2).

We may eliminate T in equations (4, 5) and obtain an
equation relating Da and Db only:

−(A−Ath) ln
(
Db − 1
Da − 1

)
+A(Da −Db) = 0. (6)

This equation will be useful when we analyze the behavior
of Da and Db as functions of A (Appendix B).

3.2 High intensity pulse

The second contribution to the PQS oscillations comes
from the high intensity pulse which now verifies the scal-
ing I = O(γ−1) � 1. Assuming γ = O(γ), the leading
equations for the pulse are given by

I ′ = I
(
−1 +AD +AD

)
, (7)

D′ = −γDI, D
′

= −γαDI (8)

where prime means differentiation with respect to the in-
ner time ξ ≡ s−T

(
ξ = O(1)

)
. These equations are bound-

ary layer (or inner layer) equations which must be solved
with the matching conditions

I → 0, D→ Db and D→ −1 (9)

as ξ → −∞. A first integration of these equations was ob-
tained independently by Szabo and Stein [9], Erneux [10]
and Degnan [11]. Specifically, we integrate the equations
for dI/dD and dD/dD and find: D = − (D/Db)

m and

I =
1
γ

[
A(Db −D) + ln

(
D

Db

)
+
A

m

((
D

Db

)m
− 1

)]
(10)

where m is defined by

m ≡ αγ/γ. (11)

A closed orbit in the phase plane implies that D and I
match their starting values after a complete period. Equiv-
alently, we require that (D, I) = (Da, 0) after the quick
pulse. From (10), we then obtain an equation for D = Da

given by

A(Db −Da) + ln
(
Da

Db

)
+
A

m

((
Da

Db

)m
− 1

)
= 0. (12)

We note from the values of the parameters listed in Table 1
that m = 103 for the semiconductor saturable absorber.
This motivates a further simplification of equations (10,
12) given by

I =
1
γ

[
A(Db −D) + ln

(
D

Db

)]
(m large) (13)

and

A(Db −Da) + ln
(
Da

Db

)
= 0 (m large). (14)

In summary, we derived three nonlinear algebraic equa-
tions for the interpulse period T and the initial and final
points of the interpulse phase Da and Db. These equations
are given by (4, 5, 12) or by (4, 5, 14) if m is large. They
are appropriate for detailed analytical or numerical stud-
ies of the PQS oscillations. The solution of these equa-
tions represents the leading order approximation of the
PQS limit-cycle and is based on the mathematical limit γ
small and γ = O(γ) small. This limit is particularly ap-
propriate for microchip lasers which exhibit very small γ.
The analytical theories developed by Szabo and Stein [9]
and later by Degnan [11] are not based on an asymptotic
limit of the laser rate equations. They correctly found the
leading equations for the high intensity pulse but fail to
obtain an expression of the interpulse period that depends
on the laser parameters only.
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3.3 Near threshold conditions and gain reduction

In this subsection, we consider equations (4, 5, 14) for m
large and show how simple expressions for the repetition
rate and pulse width used in the literature can be de-
rived. A good review of these expressions is given in [4].
Our analysis allows us to discuss their asymptotic validity
and possible ways to improve them. Specifically, we inves-
tigate the limits of T , Da and Db near the laser threshold.
Assuming γT → ∞ as A − Ath → 0 we find from (4, 5)
that

γT ' A(1−Da)
(A− Ath)

(15)

and

Db ' 1. (16)

In the expressions (15, 16), the correction terms are
O
(
exp(−(A−Ath)−1)

)
small. Then, from equation (14),

we obtain Da as the root of

Ath(1−Da) + ln(Da) = 0 (m large). (17)

The expression (15) leads to the repetition rate frep = T−1

frep = γ
A−Ath

Ath

1
∆D

(18)

where ∆D ≡ Db − Da ' 1 − Da is defined as the gain
reduction. The approximation (18) is equivalent to the
expression of the repetition rate given by (12) in [4]. Sim-
ilarly, (16) and (17) are equivalent to the expression (6)
and equation (A11) in [4], respectively. It is instructive to
further analyze equation (17) for Da by considering the
limit A small because it will allow us to find an expression
of the gain reduction used in [4]. Specifically, expanding
equation (17) for Da close to 1, we find that

1−Da ' 2A. (19)

Since Db is exponentially close to 1, we may write that
the gain reduction ∆D = Db − Da equals 2A which is
equivalent to equation (7) in [4]. This particular limit (i.e.,
first A − Ath → 0 and then A → 0) is however delicate
because it requires the inequalities

0 < A−Ath � A� 1. (20)

Practically, we would like to determine the behavior of
the gain reduction as A → 0 for A − Ath arbitrary. In
Figure 4, we show Db and Da obtained numerically from
equations (6, 14). The gain reduction is clearly parabolic
near A = 0. In Appendix B, we determine this parabola
analytically and find that

Db,a '
1
A

1±

√
3A(A− 1)

A

 (21)

Fig. 4. The initial and final values of D of the interpulse regime
as a function of A. The points Da and Db are determined
numerically from equations (6, 14). The dotted line is the small
A limit given by (21).

as A→ 0 (broken line in Fig. 4). In other words, the gain
reduction Db −Da scales like

√
A for the case

A� 1 and A−Ath = O(1) (22)

and not like A as for the case (20).
The behavior of Db and Da becomes asymmetric as

soon as A > 1. This can be anticipated analytically from
equations (6, 14) by determining Db and Da for A large.
We find that Da → 0 and Db → 1 as A increases (A =
O(A)) clearly implying asymmetry with respect to the line
Db = Da = A−1.

Although the expressions (10, 13) give the maximum
intensity, it doesn’t give the structure of the pulse as it
varies in time. In order to find the pulse shape, a second
integration is needed. An analytical expression of the in-
tegral solution in terms of elementary functions doesn’t
exist and we shall concentrate on particular cases.

4 Symmetric pulses

Spühler et al. [4] noted numerically that the intensity
pulses are symmetric if A < 1. An sech2 fit of the pulse
then allowed an estimation of the pulse width. In this sec-
tion, we demonstrate analytically that a sech2 intensity
pulse is indeed the leading solution provided A is suffi-
ciently small.

We consider the equation for D in (8) and substitute
I given by (13). The resulting equation is

D′ = −D
[
A(Db −D) + ln

(
D

Db

)]
· (23)
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We solve this equation with the matching condition
D(−∞) = Db knowing that D(∞) = Da. The fact that
Db − Da → 0 as A → 0 (see (21)) motivates seeking a
solution of the form

D = Db(1 + εu) (24)

where ε is a small parameter defined by

ε ≡ ADb − 1 (25)

Substituting equations (24, 25) into equation (23), we find
that the leading order problem for u as ε→ 0 is given by

u′ =
ε

2
u(2 + u), u(−∞) = 0. (26)

Solving equation (26), we obtain

u = −2
exp(εξ)

1 + exp(εξ)
· (27)

Using equations (13, 23, 24), we have I ' −γ−1εu′ which
then leads to

I = γ−1 ε
2

2
sech2

(
εξ

2

)
· (28)

Note that this solution depends on one parameter only (ε).
We may determine ε from the numerical determination of
Db(A) (as in Fig. 4) or use its limit for A small given by

ε ' xb (29)

where xb is defined by (B.10) in Appendix B. The expres-
sion (28) allows to formulate an expression for the pulse
width given by

∆s =
1
ε

4 arccosh(
√

2) ' 3.52
ε
· (30)

The expression (30) is equivalent to (8) in [4] provided ε '
A which is correct under the restrictive conditions (20).

In summary, we have shown analytically that a sech2

intensity pulse is indeed the leading approximation of the
laser equations provided that A is sufficiently small. The
solution depends on one parameter (ε) which can be evalu-
ated either numerically or analytically in the limitA small.

5 Asymmetric pulses

If A is progressively increased from a small value, the pulse
shape quickly becomes asymmetric. In this section, we an-
alyze this asymmetry by constructing an asymptotic solu-
tion for D. We substitute I given by (10) in the equation
for D in (8) and find

D′ = −D
[
A(Db −D) + ln

(
D

Db

)
+
A

m

((
D

Db

)m
− 1

)]
,

D(−∞) = Db. (31)

After solving equation (31), we determine the intensity us-
ing (10). In order to capture the asymmetry of the pulse,
we propose to consider the limit A large (keeping A fixed).
The solution is then the contribution of two distinct parts
namely, a quick initial layer solution followed by a solution
for its decay. We construct these solutions by using the
method of matched asymptotic expansions [17]. The initial
layer solution is obtained by seeking a solution of equa-
tion (31) of the formX = D/Db = X0(ζ)+A−1X1(ζ)+· · ·
where ζ is a fast time variable defined by ζ = ADbξ. The
leading order problem for X0 is easily solved and gives

D =
Db

1 + exp(ADbξ)
+O(A−1). (32)

Substituting (32) into (10) and keeping the two first terms
lead to the intensity

I1(ξ) ' γ−1

[
ADb

exp (ADbξ)
1 + exp (ADbξ)

− ln
(
1 + exp (ADbξ)

)]
+O(1). (33)

In the expression (33), Db is a function of A which is
determined from the interpulse period equations (see Ap-
pendix C). Note that A does not appear explicitly in (33)
because (33) only shows the leading approximation of
the intensity for A large. However, A appears implicitly
through Db. Note that as ADbξ → ∞ (called the outer
limit), D and I1 approach the limits

D → 0 and I1 → γ−1 [ADb −ADbξ] . (34)

These limits are needed in order to determine the solu-
tion after the quick initial layer. After the pulse reaches
its maximum, it experiences a relatively slow decay. Sub-
stituting D = D = 0 into equation (7), we now solve

I ′ = −I (35)

with leads to the simple solution

I2 = C exp (−ξ) . (36)

In (36), C is a constant of integration which is determined
by matching with the initial layer solution [17]. Specifi-
cally, we need to compare the behavior of (36) as ξ → 0
(called the inner limit) with the outer limit (34). Expand-
ing (36) for small ξ gives I2 = C(1− ξ + · · · ). Comparing
with (34) then leads to the condition C = ADb and

I2 = γ−1ADb exp (−ξ) . (37)

Figure 5 show the two functions (33, 37) together with an
uniform solution. This uniform solution is best described
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Fig. 5. Asymmetric intensity pulse. The figure represents the
two approximations of the intensity pulse. They are labeled by
1 and 2 and are given by (33, 37), respectively. The full line
represents the uniform solution (38, 39).

in parametric form and is given by1

ξ =
1

ADb
ln
(
Db −D
Db

)
− ln

(
1 +

1
ADb

ln
(
D

Db

))
(38)

and

γI = A(Db −D) + ln(D/Db) (39)

where the parameter is D (Da < D < Db where Da � 1 is
defined as the second root of the transcendental equation
A(Db −D) + ln(D/Db) = 0). We have found numerically
that (37) is an excellent approximation of the decay of
the pulse. On the other hand, (33) is in semi-quantitative
agreement with the numerical solution for A = 10.48. The
agreement becomes progressively better as we increases
the pump A.

6 Summary

In this paper, we compared the dimensionless parame-
ters of two distinct microchip laser experiments. We have
noted similar orders of magnitudes for all parameters ex-
cept for the saturable absorber pump parameter A. In the
case of a semiconductor saturable absorber, A < 1 and

1 Using (32), we rewrite the first solution as ξ = ξ1(D) =
(1/ADb) ln(Db/D−1). Then using equation (8) for D and (37),
we have ln(D/Db) = ADb

�
exp(−ξ) − 1

�
which gives ξ =

ξ2(D) = − ln
�
1 + (1/ADb) ln(D/Db)

�
. The common part

(i.e., lim ξ1 as D → 0 = lim ξ2 as D → Db) is ξc =
−(1/ADb) ln(D/Db). Thus, the uniform solution is constructed
as ξu = ξ1 + ξ2 − ξc and is given by (38).

symmetric pulses are observed numerically. In the case of
a solid state saturable absorber, asymmetric pulses are
observed with a much larger maximum.

In the first case, we confirm analytically that a sech2 fit
of the pulse is an asymptotic approximation of the laser
rate equations. The sech2 function depends on only one
parameter which is a function of the laser pump parame-
ters. It can be computed either numerically from two cou-
pled nonlinear algebraic equations or analytically in the
limit A small.

In the second case, we investigate the asymmetry of the
pulse by considering the limit of large values of the laser
pump parameterA. We find that the asymmetric pulse can
be decomposed into two distinct functions. First, we note
a quick initial increase of the intensity which is controlled
by the pump parameter. Then, we note an exponential
decay of the intensity which only depends on the decay
rate of the field in the cavity. An exponential fit of the tail
of the pulse could then lead to the cavity constant.

Our study of the PQS microchip laser oscillations dif-
fers from previous analytical investigations by the massive
use of asymptotic methods. These methods allowed us to
discuss the validity of previously used formulae and led
to an unified description of the pulsating intensity oscilla-
tions in terms of various parameters.

The research of TE was supported by the US Air Force Of-
fice of Scientific Research grant AFOSR F49620-98-1-0400, the
National Science Foundation grant DMS-9973203, the Fonds
National de la Recherche Scientifique (Belgium) and the In-
terUniversity Attraction Pole of the Belgian government.

Appendix A: Dimensionless parameters
for microchip lasers using semiconductor
saturable absorbers

In this appendix, we consider the laser rate equations used
by Spühler et al. [4] and reformulate these equations in the
form of equations (1–3). The equations in [4] are formu-
lated in terms of the laser power P (t), the intensity gain
coefficient per cavity round trip g(t), and the intensity
saturable loss coefficient per cavity round trip q(t). They
are given by

TR
dP
dt

= [g − q − l]P,

dg
dt

= −g − g0

τL
− gP

EL
,

dq
dt

= −q − q0
τA

− qP

EA
(A.1)

where TR is the cavity round-trip time, EL is the satu-
ration energy of the gain, τL is the upper-state lifetime
of the gain medium, EA is the saturation energy of the
absorber, and τA is the relaxation time of the absorber. l
denotes the total nonsaturable loss coefficient per round
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trip. g = g0 and q = q0 are the equilibrium values of g and
q as P = 0. Typical values of the fixed parameters are [4]:

TR = 2.61 ps, l = 14%, τL = 50 µs,

τA = 200 ps,
EL

EA
= 103, q0 = 5%. (A.2)

The pump parameter is defined by r ≡ g0gc
−1 where gc ≡

l + q0 is the laser first threshold.
Introducing the new variables

D ≡ g

g0
, D ≡ − q

q0
, I ≡ τL

EL
P, s ≡ l

Tr
t (A.3)

and the new parameters

A ≡ g0

l
, A ≡ q0

l
, γ ≡ TR

lτL
, γ ≡ TR

lτA
, α ≡ τAEL

τLEA

(A.4)

into equation (A.1), we obtain

dI
ds

=
[
AD +AD − 1

]
I,

dD
ds

= γ [1−D −DI] ,

dD
ds

= γ
[
−1−D − αDI

]
. (A.5)

We next evaluate the parameters (A.4) using (A.2) and
r = 3. We find

γ = 3.7× 10−7, γ = 9.3× 10−2, A = 0.36,

A = rAth = 4.08, α = 4× 10−3 (A.6)

where A = Ath ≡ 1+A represents the laser first threshold.

Appendix B: The limit A small

In this appendix, we examine the limit A → 0 of our
leading approximation for γ small. We assume A−Ath =
O(1). As we shall demonstrate, we obtain two different
limits if we consider the parameter m = O(1) or if we
consider m large.

B.1 Case m = O(1)

The equations that describe our approximation of the
limit-cycle are two equations for Da and Db defined as
the initial and final values of D for the interpulse phase.
These equations are given by equations (6, 12). We solve
these equations by introducing the new variables xa and
xb defined by

Da =
1
A

(1 + xa) and Db =
1
A

(1 + xb). (B.1)

We substitute (B.1) into equations (12, 6), assume that xa
and xb are O(A) small, and obtain the following problems
for xa and xb (xa 6= xb):

−A+
1
2

(xa + xb) +
(xb − xa)

2
(
xb +A(m− 1)

)
− (xb − xa)2

3
+O

(
A

3
)

= 0, (B.2)

A− 1
2

(xa + xb) +
(xb − xa)
2(1−A)

(xa −A)

+
(xb − xa)2

3(1−A)
+O

(
A

3
)

= 0. (B.3)

The leading order problem is O(A) and is identical for the
two equations:

−A+
1
2

(xa + xb) = 0. (B.4)

To obtain a second condition for xa and xb, we add
equations (B.2) and (B.3). The resulting equation is now
O(A

2
). After simplification, we have the condition

xa −A+ xb(1−A) + (1−A)A(m− 1)

+
2
3

(xb − xa)A = 0. (B.5)

Finally, we solve equations (B.4, B.5) and obtain

xb =
A

A

(
3m(A− 1) +A

)
and xa = 2A− xb. (B.6)

Note that the limit m large of (B.6) is singular because
xb becomes large in this limit. We need to reexamine this
problem by taking the limit m large first and then the
limit A small.

B.2 Case m large

The limit m large of our leading approximation of the
limit-cycle orbit is given by equation (14). The other equa-
tions remain unchanged. As for the previous case, we wish
to solve two equations for the unknown Da and Db which
are given by equations (14, 6). After introducing (B.1) into
these equations, we assume that xa and xb are O(

√
A)

small, and obtain the following problems for xa and xb

1
2

(xa + xb) +
(xb − xa)

2
xb −

(xb − xa)2

3
+O

(
A

3/2
)

= 0,

(B.7)

A− 1
2

(xa + xb) +
(xb − xa)
2(1−A)

xa

+
(xb − xa)2

3(1−A)
+O

(
A

3/2
)

= 0. (B.8)

From equation (B.7), we find that the leading order solu-
tion satisfies the condition

xa + xb = 0. (B.9)



T. Erneux et al.: The pulse shape of a passively Q-switched microchip laser 431

In order to obtain a second condition, we add equa-
tions (B.7) and (B.8). Then solving for xb using equa-
tion (B.9), we find

xb =

√
3A(A− 1)

A
and xa = −xb. (B.10)

Appendix C: The limit A large

In the limit A → ∞, Da quickly approaches zero. From
equation (6) with Da = 0, we find that Db = Db(A) sat-
isfies the following equation

(A−Ath) ln (1−Db) +ADb ' 0 (C.1)

which we may analyze using the implicit solution A =
A(Db)

A =
Ath ln (1−Db)

ln (1−Db) +Db
· (C.2)

Finally, we obtain Da from equation (12) as

Da ' Db exp(−ADb). (C.3)

Equations (C.1, C.3) are valid provided exp(−ADb) � 1
which can be realized with moderate values of A. The
extreme limit A→∞ gives

Db ∼
2Ath

(A−Ath)
(C.4)

together with (C.3).
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2. B. Braun, F.X. Kärtner, G. Zhang, M. Moser, U. Keller,
Opt. Lett. 22, 381 (1997).

3. R. Fluck, B. Braun, E. Gini, H. Melchior, U. Keller, Opt.
Lett. 22, 991 (1997).

4. G.J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser,
G. Zhang, E. Gini, U. Keller, J. Opt. Soc. Am. B 16, 376
(1999).

5. J.J. Zayhowski, Opt. Lett. 21, 588 (1996); Errata, Opt.
Lett. 21, 1618 (1996).

6. J.J. Zayhowski, C. Dill III, Opt. Lett. 19, 1427 (1994).
7. J.J. Zayhowski, Opt. Lett. 22, 169 (1997).
8. Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y.

Kalisky, M. Strauss, IEEE J. Quant. Electron. 32, 305
(1996).

9. A. Szabo, R.A. Stein, J. Appl. Phys. 36, 1562 (1966).
10. T. Erneux, J. Opt. Soc. Am. B 5, 1063 (1988).
11. J.J. Degnan, IEEE J. Quant. Electron. 31, 1890 (1995).
12. P. Peterson, A. Gavrielides, M.P. Sharma, T. Erneux,

IEEE J. Quant. Electron. 35, 1 (1999).
13. A.E. Siegman, Lasers (Univ. Science Books, 1986), p. 1024.
14. E. Arimondo, F. Casagrande, L.A. Lugiato, P. Glorieux,

Appl. Phys. B 30, 57 (1983).
15. E. Arimondo, P. Bootz, P. Glorieux, E. Menchi, J. Opt.

Soc. Am. B 2, 193 (1985).
16. N. Abraham, P. Mandel, L. Narducci, Prog. Opt. 25, 1

(1988); see p. 104.
17. C.M. Bender, S.A. Orzag, Advanced Mathematical Methods

for Scientists and Engineers (McGraw-Hill Book, Comp.
New York, 1978).


